Responsible Center: NASA JSC
Grant Monitor: Brocato, Becky
Center Contact: becky.brocato@nasa.gov
Unique ID: 12658
|
Solicitation / Funding Source: Directed Research
Grant/Contract No.: Directed Research
Project Type: Ground
Flight Program:
TechPort: No |
No. of Post Docs: 0
No. of PhD Candidates: 0
No. of Master's Candidates: 0
No. of Bachelor's Candidates: 0
|
No. of PhD Degrees: 0
No. of Master's Degrees: 0
No. of Bachelor's Degrees: 0
|
|
Human Research Program Elements: |
(1) HHC:Human Health Countermeasures
|
|
Human Research Program Risks: |
(1) Food:Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System
|
|
Human Research Program Gaps: |
(1) Food-01:We need to determine how processing and storage affect the nutritional content of the food system. (Previous Title: AFT1)
|
|
Flight Assignment/Project Notes: |
NOTE: Start date revised to 12/01/2019 from 10/01/2019 per discussions with PI and HRP (Ed., 8/2/21) |
|
Task Description: |
[Ed. note 12/13/2019: Continuation of "Improvement of Shelf Life for Space Food Through Hurdle Approach" with Principal Investigator (PI) Maya Cooper, due to PI Cooper relocating within Human Research Program at Johnson Space Center.]
Most items of the current space food system will not achieve the minimum 5-year shelf life required for a Mars mission due to decrements in nutritional quality or sensory acceptability. Previous Advanced Food Technology (AFT) studies have shown critical losses in some nutrients in a number of space food products after 3 years of ambient storage [Cooper project, “Effects of Processing and Subsequent Storage on Nutrition (PI Cooper)”], unacceptable losses in quality after 3 years [Catauro, P.M. & Perchonok, M.H. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. Journal of food science (2012) 77, S29-39], and the inability of individual processing and storage solutions to achieve a projected 5-year shelf life (Cooper project “Integration of Product, Package, Process, and Environment: A Food System Optimization”). This task will investigate the use of hurdle approach to increase the shelf life of the current space food system, as well as assess the stability a supplemental component food system (homogeneous, shelf-stable foods and an assortment of condiments) stored under similar conditions. The study will produce the 5-year data essential to fully inform the state of a Mars food system and indicate the best countermeasures to nutritional and sensory degradation. Putting a 7-year data option in place initially will ensure that the PRR is not unnecessarily extended by several years if it is determined at that time that a longer-term shelf life study was necessary to determine mission requirements.
Specific Aims:
Determine how reduced storage temperatures (-80C, -20C, 4C) and alternative processing and packaging impact the quality and nutrient concentrations of space food over a 5-7 year shelf life period as compared to the quality and nutrient concentrations of space food produced under traditional methods and stored at ambient temperature (21C). |
|
Research Impact/Earth Benefits: |
The discovery of pathways to extend the shelf life of space food is directly transferable to the extension of shelf life of military food, emergency food rations, and commercial food items. Longer food shelf life leads to lower food waste, higher food quality in aging food samples, and an opportunity to increase variety within stored food inventory. The exploration of an alternative technology, specifically microwave-assisted thermal sterilization, provides additional data for the FDA (Food & Drug Administration) approval of this new processing technology, which drives commercial innovation in the food industry. |