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NOTE (Ed., March 2014): Continuation of "The Control and Dynamics of Hard Sphere Colloidal
Dispersions--NNX08AK04G", grant # NNX08AK04G with the same Principal Investigator. 
Colloid science is entering a new era. Over the past 15 years, our NASA-sponsored research has mainly dealt with
monodisperse suspensions of colloidal particles interacting via well-known forces. Using spherical particles and
observations with light scattering and microscopy, we have gained a great deal of fundamental knowledge about
different phases of matter and the dynamics and thermodynamics of their formation. In particular, our experimental
results in microgravity have lead to a basic understanding of why crystals and glasses form and their properties. 

During the past decade, we have made great strides in synthesizing new classes of particles with different shapes and
specific, reversible or irreversible, variable range interactions. We have also found new ways to manipulate the particles
with flow, electric and magnetic fields, and light. We are therefore positioned at the threshold of a new technology,
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Task Description:
with flow, electric and magnetic fields, and light. We are therefore positioned at the threshold of a new technology,
assembling equilibrium and non-equilibrium macroscopic structures with function and activity from well designed
particles on the nano to micron scale. 

Of course, there are still fundamental scientific questions which we can and will address including a host of new ordered
phases, frozen configurations, frustration and glasses, and the process of self-organization itself. In particular, we plan to
use the microscopy and light scattering instruments, in collaboration with our European colleagues, to study particles
that we prepare through emulsion and dispersion polymerization. Physical lithographic techniques will also be
employed, and the particles will be modified chemically for controllable interactions. We plan to use different phoretic
techniques– electro-, dielectro-, and thermo-phoresis– to control the particles density and orientation. These will also
serve as the driving forces to establish the rheological properties of these new systems. 

  

Rationale for HRP Directed Research:   

Research Impact/Earth Benefits:

Characterization of crystal formation in the microgravity environment of the ISS (International Space Station) can lead
to a greater understanding of how gravity affects many kinds of colloidal materials, including monodisperse ellipsoids
and cubes, colloidal clusters of silica or polymer microspheres, DNA-functionalized colloidal spheres, and
'lock-and-key' colloids. By performing these experiments in reduced gravity, we intend to accomplish the desired
characterization without gravitationally-induced inhomogeneities that affect both the dynamics and equilibrium state on
Earth. Understanding these complex materials should enable new ways of forming ordered phases, such as those sought
for photonic devices to be used in optical communication systems. With the ability to make particles of different shapes,
i.e., non spherical, we also have the possibility of having directionally dependent particle interactions. For example, we
could take tetrahedral clusters of particles and attach DNA to them. The complementary single-stranded DNA 'sticky
ends' can associate/dissociate via thermal activation. This arrangement could lead to tetrahedral bonding as found in
diamond or in amorphous glass structures. Another approach utilizes depletion interactions. Since we can
lithographically prepare particles of any shape we design in two dimensions and many shapes in three dimensions, we
can fabricate lock-and-key colloids which only bind to their complementary shape. In this case, the binding is also
directional since the congruent surfaces must match. We can also make such lock-and-key particles through emulsion
chemistry. Our goal is to produce some simple processes with such ‘designer particles’ and interactions, to lay the
foundations for self-assembly and perhaps self-replication of this new class of materials. 
  

NASA Contract No. NNX13AR67G: The control and dynamics of hard sphere colloidal dispersions Task Book report,
Year 1: Sept. 1, 2013 to Aug 31, 2014. Principal Investigator: Paul M. Chaikin 
The program’s principle goal is to explain fundamental, microscopic mechanisms of self-organization. Self-organization
can be described as a process leading to some form of overall order, which results from local interactions between the
components of an initially disordered system. 

A classic example is the so-called hard sphere colloidal crystal that we have produced and studied in both 1-g and
microgravity. Here, microscopic particles – similar in shape and size – spontaneously arrange themselves into
structurally well-defined arrays. Thermal fluctuations trigger the (entropically-) favorable structures whose physical size
and number are amplified by positive feedback. The process is called crystal nucleation and growth. This system is large
enough and slow enough to be observed directly under an optical microscope, and is used extensively as a model for
atomic and molecular scale phenomena. 

Nature produces these structures, too: the opal is composed of silica spheres, 150 to 300 nanometers in diameter,
arranged in a hexagonal or face centered cubic (fcc) lattice. Opals shows a range of visible colors due to their internal
structure, which causes the interference and diffraction of light passing through the microstructure. 

Our latest model complex fluids are composed of specially synthesized colloidal particles with well understood, well
controlled and sophisticated interactions as described below. The experiments we propose feature recently introduced
colloidal systems with directional, specific, and externally controlled inter-particle interactions and motility. 

• Colloidal particle synthesis, ‘Superballs’ 

We have delivered to NASA, for launch to the space station in Fall 2014, a series of samples of polymer cubes, actually
superballs, with different corner roundings described by the simple equation: 1 = (x/a)^m + (y/a)^m + (z/a)^m, where m,
the shape parameter, varies from 2 to 4; a is the edge length; x, y, z are spatial coordinates. The usual spheres, m = 2,
pack most densely in a fcc lattice. Cubes, m = 8, pack in a simple cubic lattice. The cubes with rounded edges pack most
densely in a tilted lattice taking advantage of the space at their corners (1). Most interestingly, using depletants of
different sizes we can fill the edges and corners of the cubes and change the packing/crystal structure (2,3). The
depletants in the flight samples are nanoparticles and the cubes are fluorescently dyed. Our more recent experiments
quantitatively show the role of different sized depletants and different shaped particles in the phase diagram of these
particles. To date, our experiments have been limited to two dimensions due to the disruptive action of gravity. In other
words, the particles tend to sediment because of their density mismatch with the suspending media, precluding three
dimensional structures. In microgravity, we hope to observe the formation of 3D crystallites. 

• Colloidal Swimmers 

In the previous report, we discussed our fabrication and early experiments with light activated colloidal swimmers
propelled by a combination of osmotic and phoretic effects (4). The micron-size particles are driven by the catalytic
decomposition of hydrogen peroxide into water and oxygen only when blue light is applied to the system which consists
of a polymer sphere with a slightly protruding, photosensitive / catalytic hematite cube inside. We therefore have a
dynamical, non-equilibrium, system which is externally controllable. This property was used to demonstrate that we can
capture and move other colloidal particles, ‘colloidal dockers’, to desired positions. This special feature should allow for
the directed assembly of micro- and nano-scale structures (5). We have also demonstrated that the swimmers can sense
and respond to external system variations in a way usually associated only with living creatures. In particular, they can
flow upstream mimicking the behavior of, e.g., salmon (6). In the presence of an external flow, when the light is off and
the particles are not active, the flow advects the swimmers downstream. In a 4 micron/sec flow, when the light is turned
on, the swimmers reverse direction and move upstream. In the faster flow, they direct themselves upstream but at a
swimming speed of 8 microns/sec they cannot overcome the downward flow. The upstream motion results from the
active hematite element being attracted to the surface and acting as a pivot while the flow forces the polymer sphere
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active hematite element being attracted to the surface and acting as a pivot while the flow forces the polymer sphere
into a relative downstream position. 

• DNA Coated Colloids 

In previous reports we have shown how DNA functionalized colloids can be used to perform self-assembly protocols
with specific recognition and association of a particle to many other different particles. We had worked out the
thermodynamics of these interactions in detail but the kinetics were largely unknown. In reference (7), we have
performed a detailed set of experiments and developed a model which quantitatively accounts for the rate of aggregation
of these particles as a function of the DNA sequences, length, areal coverage and salt concentration. These results allow
us and others to further design synthetic routes for making complex structures taking into account the different rates at
which separate parts will assemble. 

Even more sophisticated colloidal assembly is enabled by our fabrication, along with the Weck and Seeman groups in
NYU chemistry of DNA with cinnamate substituted for a set of complementary base pairs (8). Cinnamate is
photocrosslinkable by exposure to UV light. Thus after particles or structures are assembled by the specific binding of
complementary strands of DNA, the bonds can be made permanent by shining on UV. The usual assembly of structures
with DNA hybridization is reversible upon heating, but now we can choose which links are reversible and which are
permanent. 

• Control of defect structure using optical tweezers 

Our early NASA flight experiments using poly(methyl methacrylate) (PMMA) hard spheres yielded some extraordinary
science from microgravity. Several researchers attempted to modify the system to get it density matched so that
experiments could be done on the ground. While the hard sphere density matching did not work, the new systems
became a beautiful example of charged spheres with remarkably long range interactions. We have used these systems to
study Coulomb crystals and most recently to use them as ideal ways to study and manipulate topological defects such as
dislocations. We performed confocal microscope imaging of the bulk system (PMMA colloids in oil) and a layer of
PMMA particles which was bound by electrostatic forces to a thin water layer on a cover slip. This 2D system can be
readily perturbed by introducing isolated defects using laser tweezers. In reference (9), we published our results on the
formation and manipulation of grain boundaries and dislocation pairs, and dislocation reactions in this system. Our
results point to many of the fundamental studies that could be done in microgravity with the addition of a laser tweezer
setup to the flight confocal microscope. 
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