¥14 X X /	EV 2022		FNL 01/07/2024
Fiscal Year:	FY 2022	Task Last Updated:	FY 01/07/2024
PI Name:	Buettmann, Evan Ph.D.		
Project Title:	Investigating the Effects of Simulated M	licrogravity Duration and Conne	xin 43 Deficiency on Bone Fracture Healing
Division Name:	Human Research		
Program/Discipline:			
Program/Discipline Element/Subdiscipline:	TRISHTRISH		
Joint Agency Name:		TechPort:	No
Human Research Program Elements:	None		
Human Research Program Risks:	None		
Space Biology Element:	None		
Space Biology Cross-Element Discipline:	None		
Space Biology Special Category:	None		
PI Email:	egbtg6@gmail.com	Fax:	FY
PI Organization Type:	UNIVERSITY	Phone:	636-236-5676
Organization Name:	Virginia Commonwealth University		
PI Address 1:	Department of Biomedical Engineering		
PI Address 2:			
PI Web Page:			
City:	Richmond	State:	VA
Zip Code:	23284-9097	Congressional District:	4
Comments:			
Project Type:	Ground	Solicitation / Funding Source:	2020 TRISH-RFA-2001-PD: Translational Research Institute for Space Health (TRISH) Postdoctoral Fellowships
Start Date:	09/01/2020	End Date:	08/31/2023
No. of Post Docs:	1	No. of PhD Degrees:	
No. of PhD Candidates:		No. of Master' Degrees:	
No. of Master's Candidates:		No. of Bachelor's Degrees:	
No. of Bachelor's Candidates:		Monitoring Center:	TRISH
Contact Monitor:		Contact Phone:	
Contact Email:			
Flight Program:			
Flight Assignment:	NOTE: End date changed to 08/31/2023	per TRISH (Ed., 8/4/22).	
Key Personnel Changes/Previous PI:			
COI Name (Institution):	Donahue, Henry Ph.D. (MENTOR: Virginia Commonwealth University)		
Grant/Contract No.:	NNX16AO69A-P0501		
Performance Goal No.:			
Performance Goal Text:			

Task Description:	POSTDOCTORAL FELLOWSHIP Astronauts exposed to long periods of unloading due to extended spaceflight experience on average a decrease in bone strength at 2.0 - 2.5% per month. This sharp decline in bone strength can predispose astronauts to fragility fractures, especially when re-entering a gravity-based loading environment due to extra-vehicular activities, extraterrestrial exploration, off-nominal spacecraft landings, and or upon return to Earth. While emerging evidence suggests that unloading, as would occur in microgravity during spaceflight, impairs fracture healing, the cellular and molecular mechanisms by which this occurs largely remains unknown due to a lack of ground-based rodent analog models mimicking spaceflight conditions. Understanding the mechanisms underlying the microgravity-induced impairment in bone regeneration following fracture will lead to the development of new countermeasure targets. One potential countermeasure target is Connexin 43 (Cx43), the primary gap junction protein in bone. Gap junctions facilitate intercellular communication between neighboring bone cells such as osteoblasts and osteocytes and have been strongly implicated in bone fracture healing and bone adaptation to the mechanical environment. In order to study how the duration of microgravity and Cx43 affect fracture healing, will be developed and characterized. This model will be created by combining the ground-based microgravity analog, hindlimb tail unloading, in conjunction with an established mouse endochondral bone healing model, the stabilized open surgical femoral fracture model. Bone healing outcomes via molecular, histological, mechanical and cellular techniques, will be evaluated in wildtype and Cx43 transgenic mice. Biomarker characterization of healing progression will be evaluated. The outcomes of this research will provide better mechanistic insight into how microgravity and gravitational reloading such as that found during spaceflight and terrestrial exploration, respectively, affects bone healing. Further
Rationale for HRP Directed Research	1:
Research Impact/Earth Benefits:	This project has the capability to address the major NASA Human Research Program (HRP) Gaps in Osteo 1 (Risk of Bone Fracture due to Spaceflight-induced Changes to Bone) and Fracture 1 (We Don't Understand how Spaceflight Affects Fracture Healing). This is the first project to look at mechanical loading interventions and targeted gene deletions using transgenic mice to increase fracture healing during simulated microgravity. If successful, we can combat multiple musculoskeletal health risks (bone, muscle) of spaceflight using a single countermeasure (mechanical loading, Cx43 deletion, and or exercise).
Task Progress:	 Astronauts exposed to long periods of unloading due to extended spaceflight experience on average a decrease in bone strength at 2.0 - 2.5% per month. This sharp decline in bone strength can predispose astronauts to fragility fractures, especially when re-entering a gravity-based loading environment due to extra-vehicular activities, extraterestrial exploration, off-nominal spaceraft landings, and or upon return to Earth. While emerging evidence suggests that unloading, as would occur in microgravity during spaceflight, impairs fracture healing, the cellular and molecular mechanisms by which this occurs largely remains unknown due to a lack of ground based rodent analog models minicking spaceflight conditions. Understanding the mechanisms underlying the microgravity-induced impairment in bone regrentation following fracture will lead to the development of new countermeasure target. So Constended State (SC43), the primary gap junction protein in bone. Gap junctions facilitate intercellular communication between neighboring bone cells such as osteolasts and osteocytes and have been strongly implicated in bone fracture healing and bone adaptation to the mechanical environment. In order to study how the duration of microgravity and Cs43 affect fracture healing outcomes, a novel nurine healing model will be created by combining the ground-based microgravity analog, hindlimb unloading by tail suspension (HLU), in conjunction with an established mouse endochondral bone healing model, the stabilized open surgical femoral fracture model. Bone healing outcomes via molecular, histological, mechanical and cellular techniques will be evaluated in wildtype (Aim 1) and Cs43 transgenic mice (Aim 2). The outcomes of this research will provide better mechanistic insight into how microgravity and gravitational reloading for 2 wecks during fracture healing during microgravity. Characterization of bone muscle and callus formation in a novel murine healing model undergoing different periods of unloading bef

	role as a countermeasure target would increase in readiness level.		
	4. Research for the upcoming year will be aimed at further interrogation of the mechanistic role of Cx43 in altering fracture repair due to simulated microgravity in mature osteoblasts and osteocytes using a noninducible transgenic mouse model (DMP1-Cre CX43 fl/fl) and now inducible model (DMP1-CreERT2 CX43 fl/fl). This will allow us to determine if our Cx43-deficient fracture phenotype during simulated microgravity is due to confounding bone developmental changes or rather changes in immediate mechanosensation during healing. We will also determine the optimal loading regimen for normal bone repair during HLS using direct bone loading and Optogenetics to stimulate muscle contraction during simulated microgravity exposure. This work will inform exercise interventions and the potential of optogenetics as effective countermeasures for improving muscle function and bone healing during spaceflight.		
Bibliography Type:	Description: (Last Updated: 03/13/2025)		
Awards	Buettmann EG. "American Society for Bone and Mineral Research (ASBMR) 2021 Meeting Research Travel Award, San Diego, October 1-4, 2021." Oct-2021		
Awards	Buettmann EG. "ISFR Biennial Meeting 2022 Travel Award, Edinburgh, Scotland, September 5 - 7, 2022." Sep-2022		
Awards	Buettmann EG. "ISFR Biennial Meeting 2022 Poster Award, Edinburgh, Scotland, September 5 - 7, 2022." Sep-2022		
Awards	Buettmann EG. "Virginia Commonwealth University (VCU) Postdoctoral Travel Award, May 2022." May-2022		
Books/Book Chapters	DeNapoli RC, Buettmann EG, Donahue HJ. "Cellular and Molecular Biology in Bone Remodeling." in "Osteoporotic Fracture and Systemic Skeletal Disorders." Ed. Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds). Springer, Singapore. <u>https://doi.org/10.1007/978-981-16-5613-2_1</u> , Sep-2021		