X14 X X7	FN 0000		EX 04/20/2022	
Fiscal Year:		ast Updated:	FY 04/28/2022	
PI Name:	Rosenberg, Marissa Ph.D.			
Project Title:	Development of Sensorimotor Fitness for Duty Assessments Using Ground Analogs			
Division Name:	Human Research			
Program/Discipline:				
Program/Discipline Element/Subdiscipline:				
Joint Agency Name:	TechPort:		No	
Human Research Program Elements:	(1) HHC :Human Health Countermeasures			
Human Research Program Risks:	(1) Sensorimotor: Risk of Altered Sensorimotor/Vestibular Function Impacting Critical Mission Tasks			
Space Biology Element:	None			
Space Biology Cross-Element Discipline:	None			
Space Biology Special Category:	None			
PI Email:	Marissa.j.rosenberg@nasa.gov	Fax:	FY	
PI Organization Type:	NASA CENTER	Phone:	281-244-9787	
Organization Name:	NASA Johnson Space Center			
PI Address 1:	BER, B21/R1216C			
PI Address 2:	2400 NASA Parkway			
PI Web Page:				
City:	Houston	State:	TX	
Zip Code:	77058 Congressio	onal District:	22	
Comments:				
Project Type:	GROUND Solicitati	on / Funding Source:	Directed Research	
Start Date:	10/27/2021	End Date:	05/27/2022	
No. of Post Docs:	No. of F	PhD Degrees:		
No. of PhD Candidates:	No. of Master' Degrees:			
No. of Master's Candidates:	No. of Bachel	or's Degrees:		
No. of Bachelor's Candidates:	Monito	oring Center:	NASA JSC	
Contact Monitor:	Stenger, Michael Co	ntact Phone:	281-483-1311	
Contact Email:	michael.b.stenger@nasa.gov			
Flight Program:				
Flight Assignment:	NOTE: End date changed to 05/27/2022 as Dr. Sarah Moudy took over the project in May 2022 (Ed., 8/12/22)			
Key Personnel Changes/Previous PI:				
COI Name (Institution):	Wood, Scott Ph.D. (NASA Johnson Space Center) Peters, Brian Ph.D. (NASA Johnson Space Center) Reschke, Millard Ph.D. (NASA Johnson Space Center) Clark, Torin Ph.D. (University of Colorado, Boulder) Schubert, Michael Ph.D. (Johns Hopkins University)			
Grant/Contract No.:	Directed Research			
Performance Goal No.:				

Task Description:	Exploration class missions including Artemis, Gateway, and beyond will require a new level of autonomy around periods of gravitational transition, where sensorinor disturbances are great. The operational support that is available upon return to Earth including rescue teams, medical interventions, and the ability to rest as needed will not be available after funding on the linnar or Martina surface. Because of this, shere is a need to define fitness for duty standards that will be define these assessments. The first aim will assess the suitability of a proposed set of exploration field measures, or measures that would be feasible with the limited time, resources, and space of a luanr/Artanian lander, for use in defining fluxness for duty standards. A Sensorinotor Adaptation Analog (SAA) that can provide different levels of actual through combined vestibular, visual, and validated by comparison to gold standard measures that awould be results will be levels of SAA will be titrated and validated by comparison to gold standard measures will be levels of SAA will be titrated and validated by comparison to gold standard measures. The standard measures will belp us characterize how each magnitude of SAA disorientation compares to recovery from long-term microgravity exposure. In the exploration field measures of the SAA magnitude to mas sensorimotor ability (strength equivalent) to the probability of completion of operational performance. Similarly, we will obtain the exploration field measures of reacting approxes as mignitive weighted static weighted static weighted static and sensor that static st
	KL, Ploutz-Snyder LL. A novel approach for establishing fitness standards for occupational task performance. Eur J
Rationale for HRP Directed Research:	This research is directed because it contains highly constrained research. This project is in direct response to the baselined Human Research Program (HRP) Path to Risk Reduction milestone of providing updates to the NASA Fitness For Duty Standards. The new standards should be tied to fitness for duty for exploration tasks and provide a quantitative index of readiness to perform key exploration tasks. This research effort will leverage expertise based upon HRP-funded flight research investigations including Functional Tasks Test, Field Test, Standard Measures, and Manual Control, as well as MedB computerized dynamic posturography. This project will leverage critical mission tasks previously established by Ryder et al. ("A novel approach for establishing fitness standards for occupational task performance." Eur J Appl Physiol, 2019) for standards related to the risk of reduced muscle mass, strength, and endurance. This project must also leverage experience with vestibular spaceflight analogs (e.g., Galvanic vestibular stimulation, sustained 3Gx centrifugation) to characterize how the deconditioned state following G-transitions (e.g., postural instability, motion sickness, head movement restrictions) map to functional performance.

Research Impact/Earth Benefits:	
Task Progress:	New project for FY2022.
Bibliography Type:	Description: (Last Updated: 03/22/2017)