TH 1 X7	FX 2020		EX7.10/10/2020
Fiscal Year:	FY 2020 Task Last Updated: FY 10/18/2020		
PI Name:	Valero-Cuevas, Francisco Ph.D.		
Project Title:	A Simple and Compact Countermeasure for Maintenance and Enhancement of Neuromuscular Control During Spaceflight		
Division Name:	Human Research		
Program/Discipline:			
Program/Discipline Element/Subdiscipline:			
Joint Agency Name:		TechPort:	No
Human Research Program Elements:	(1) HHC :Human Health Countermeasures		
Human Research Program Risks:	(1) Sensorimotor: Risk of Altered Sensorimotor/Vestibular Function Impacting Critical Mission Tasks		
Space Biology Element:	None		
Space Biology Cross-Element Discipline:	None		
Space Biology Special Category:	None		
PI Email:	valero@neuromuscular-dynamics.com	Fax:	FY
PI Organization Type:	INDUSTRY	Phone:	323-423-0024
Organization Name:	Neuromuscular Dynamics, LLC		
PI Address 1:	2708 Foothill Blvd		
PI Address 2:	335		
PI Web Page:			
City:	La Crescenta	State:	CA
Zip Code:	91214-3516	Congressional District:	28
Comments:			
Project Type:	GROUND		2019 HERO 80JSC019N0001-FLAGSHIP & OMNIBUS: Human Research Program Crew Health. Appendix A&B
Start Date:	08/06/2020	End Date:	08/05/2021
No. of Post Docs:		No. of PhD Degrees:	
No. of PhD Candidates:		No. of Master' Degrees:	
No. of Master's Candidates:		No. of Bachelor's Degrees:	
No. of Bachelor's Candidates:		Monitoring Center:	NASA JSC
Contact Monitor:	Norsk, Peter	Contact Phone:	
Contact Email:	Peter.norsk@nasa.gov		
Flight Program:			
Flight Assignment:			
Key Personnel Changes/Previous PI:			
COI Name (Institution):	Lawrence, Emily Ph.D. (Neuromuscular Dynamic	cs, LLC)	
Grant/Contract No.:	80NSSC20K1585		
Performance Goal No.:			
Performance Goal Text:			

Task Description:	Sensorimotor control is vital for performance of mission-critical tasks in microgravity and on planetary and lunar surfaces. During the limited time available to them, astronauts rely on exercise to mitigate sensorimotor performance decrements during and after spaceflight. However, exercise mostly addresses decrements in strength and multi-joint coordination. Neuromuscular control enables dynamic interactions with the environment via fast subcortical responses. We propose that the patented Leg Dexterity System can uniquely enhance neuromuscular control and thus, greatly complement and amplify the efficacy of exercise as a countermeasure to neuromuscular performance decrements during and after spaceflight. In this project we will quantify dynamic stability and neuromuscular control before and after an 8-week strength and
	conditioning regimen (24 total training sessions) augmented with Leg Dexterity System training during each session. This ground-based demonstration of the efficacy of the Leg Dexterity System will motivate and justify spaceflight analog studies to evaluate its further development as a much-needed sensorimotor-based countermeasure.
	Multiple peer-reviewed successes support our fundamental claim that exposure to dynamic foot-ground interactions via the Leg Dexterity System will translate to improvement in sensorimotor control. Thus, we propose the Leg Dexterity System has reasonable and strong potential to serve as a training tool for sensorimotor control as per the following Hypotheses:
	Main Hypothesis: Supplementing an 8-week strength and conditioning regimen with the Leg Dexterity System increases dynamic stabilization and neuromuscular control abilities.
	Secondary Hypothesis: Despite the sex differences in dexterity levels we have reported in the past, there will be no sex difference in the amount of improvement in dynamic stabilization and neuromuscular control abilities.
	Deliverables: Scientific/Technical foundation for the simple and compact Leg Dexterity System at Countermeasure Readiness Level (CRL) 6.
	Human Research Roadmap Gap Addressed: CBS-SM28: Develop a sensorimotor countermeasure system integrated with current exercise modalities to mitigate performance decrements during and after spaceflight.
	Our team consists of Dr. Valero-Cuevas (Principal Investigator) who is a professor of Biomedical Engineering and of Biokinesiology and Physical Therapy at the University of Southern California (USC) in Los Angeles, inventor of the Leg Dexterity System and Founder of Neuromuscular Dynamics, LLC. His PhD in Mechanical Engineering is from Stanford University. Dr. Emily Lawrence (Co-Investigator) has a PhD in Biomedical Engineering from USC, and is Researcher and Trainer at the Nike Sports Research Laboratory. Formerly, she was Director of Biomechanics at Sports Academy, and Research Engineering at the NASA Biomedical Research and Environmental Sciences Division.
Rationale for HRP Directed Research	:
Research Impact/Earth Benefits:	
Task Progress:	New project for FY2020.
Bibliography Type:	Description: (Last Updated: 06/29/2023)