Task Book Report Generated on: 05/06/2024

Fiscal Year:	FY 2021	Task Last Updated:	FY 03/15/2021
PI Name:	Boothby, Thomas Ph.D.	•	
Project Title:	Using Water Bears to Identify Biological Countermea	sures to Stress During Multigen	erational Spaceflight
Division Name:	Space Biology		
Program/Discipline:			
Program/Discipline			
Element/Subdiscipline:			
Joint Agency Name:		TechPort:	No
Human Research Program Elements:	None		
Human Research Program Risks:	None		
Space Biology Element:	(1) Cell & Molecular Biology(2) Animal Biology: Invertebrate		
Space Biology Cross-Element Discipline:	None		
Space Biology Special Category:	None		
PI Email:	Thomas.Boothby@uwyo.edu	Fax:	FY
PI Organization Type:	UNIVERSITY	Phone:	
Organization Name:	University of Wyoming		
PI Address 1:	1000 E. University Ave., Department #3944		
PI Address 2:			
PI Web Page:			
City:	Laramie	State:	WY
Zip Code:	82071	Congressional District:	1
Comments:	NOTE: Previously at University of North Carolina unt	til fall 2019.	
Project Type:	FLIGHT		2014 Space Biology Flight NNH14ZTT001N
Start Date:	11/13/2019	End Date:	11/12/2022
No. of Post Docs:	1	No. of PhD Degrees:	
No. of PhD Candidates:	1	No. of Master' Degrees:	
No. of Master's Candidates:		No. of Bachelor's Degrees:	
No. of Bachelor's Candidates:		Monitoring Center:	NASA ARC
Contact Monitor:	Griko, Yuri	Contact Phone:	650-604-0519
Contact Email:	Yuri.V.Griko@nasa.gov		
Flight Program:	ISS		
Flight Assignment:	NOTE: End date changed to 11/12/2022 per NSSC inf	formation. (Ed. 10/29/21)	
Key Personnel Changes/Previous PI:			
COI Name (Institution):			
Grant/Contract No.:	80NSSC20K0283		
Performance Goal No.:			
Performance Goal Text:			

Task Book Report Generated on: 05/06/2024

NOTE: Continuation of "Using Water Bears to Identify Biological Countermeasures to Stress During Multigenerational Spaceflight," grant NNX15AB44G, when Principal Investigator was at University of North Carolina. For most organisms the stresses associated with spaceflight induce a variety of detrimental effects. To foster a safe and productive long-term human presence in space, therapies and countermeasures to spaceflight-induced stress should be developed. Tardigrades (water bears) are polyextremophiles that have evolved to tolerate multiple extreme environments, which are restrictive to most life. In 2007 tardigrades were shown to survive and reproduce normally during an 11-day low Earth orbit on the Foton-M3 Capsule. We speculate that mechanisms tardigrades have evolved to withstand extreme environments on Earth may, as a side-effect, confer protection against the stresses of spaceflight. This makes tardigrades a uniquely valuable system for studying responses to spaceflight. We have sequenced the genome of the tardigrades Hypsibius dujardini, as well as developed and validated experimental and computational approaches for measuring the effect of different environmental conditions on tardigrade gene expression – allowing us to identify mechanisms used by tardigrades to protect themselves from different stresses. We have also developed a reverse genetic approach, RNA interference, for tardigrades that allows us to directly investigate the role of a gene in conferring tolerance to an environment. We will use these approaches to study tardigrades' initial, as well as multigenerational, response to spaceflight and use RNA interference to test the functionality of the genes identified in our study. Next-generation transcriptome sequencing will be conducted on tardigrades cultures kept 0 generations (founding generation) and 4 generations onboard the International Space Station (ISS). Differential expression analysis will be conducted to compare ISS spaceflight timepoints, ground controls, and tardigrades exposed to other extreme stresses (e.g., desiccation, freezing). This approach will allow us to identify potential mediators of stress tolerance, which will serve as candidates for functional RNA interference experiments. Understanding how tardigrades tolerate spaceflight will better guide future research into countermeasures and therapies for humans exposed to the stresses of prolonged space travel. This proposal's strengths are: the use of an organism that is suited to studying mechanisms of multigenerational tolerance of extreme environments and that has an established RNA interference method for confirming the function of genes identified in our study, our Preliminary Results that validate our proposed approach and technical capabilities as well as the uniqueness and suitability of tardigrades that will allow us to conduct this study. The participants for this study are comprised of experts in tardigrades' stress response and have considerable experience with next-generation sequencing and analysis of non-model organisms. The proposed experiments directly address recommendation AH16 of the Decadal Survey and are in line with recommendation OCB-5 (Organismal and Comparative Biology) and CMM-5 (Cell, Microbial, and Molecular Biology) of NASA's Multigenerational and Developmental Biology of Invertebrates Research Emphasis as well as NASA's Fundamental Space Biology Plan 2010-2020 goals. Completion of our proposal will identify genes required for tardigrades to survive multigenerational spaceflight and will be a key step towards developing countermeasures and therapies for stresses associated with prolonged human exposure to space environments.

Task Description:

Rationale for HRP Directed Research:

Along with using mechanisms of stress tolerance to counteract detrimental effects of space travel, data from our proposed experiments could be used in the long term toward solving serious problems in the field of human health. Utilizing mechanisms that allow tardigrades to stabilize their cellular proteins and nucleic acids has been proposed as an option for the dry storage and stabilization of vaccines and other biomaterials (Guo et al., 2000; Wolkers et al., 2001; Puhlev et al., 2001). Because current techniques for vaccine production, distribution, and storage nearly always require a constant cold chain (e.g., -80 and 20 degrees C freezers), these processes are extremely expensive. Some estimates put cold chain costs at around 80% of the total cost of vaccination (Chen et al., 2011). By generating additional stress response datasets, such as response to microgravity, freezing, irradiation, and hypoxia, we will increase our ability and that of other researchers to identify specific mediators of desiccation tolerance, which will then be applied to this and similar problems.

Research Impact/Earth Benefits:

Guo, N., Puhlev, I., Brown, D. R., Mansbridge, J., & Levine, F. (2000). Trehalose expression confers desiccation tolerance on human cells. Nature biotechnology, 18(2), 168-171.

Additionally, a better understanding of mechanisms of stress tolerance could lead to the development of drought and/or

Wolkers, W. F., Walker, N. J., Tablin, F., & Crowe, J. H. (2001). Human platelets loaded with trehalose survive freeze-drying. Cryobiology, 42(2), 79-87.

Puhlev, I., Guo, N., Brown, D. R., & Levine, F. (2001). Desiccation tolerance in human cells. Cryobiology, 42(3), 207-217.

Chen, X. et al. (2011). Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Controlled Release 152, 349–355.

Task Progress:

Over the past year we have been working with the scientists at NASA Ames to complete our Science Verification Test (SVT) and Experimentation Verification Test (EVT) reviews. We have progressed through these milestones and are approved for launch on SpaceX-22.

Bibliography Type:

Description: (Last Updated: 06/28/2023)

freeze tolerant crops.

Articles in Peer-reviewed Journals

Hesgrove C, Boothby TC. "The biology of tardigrade disordered proteins in extreme stress tolerance." Cell Commun Signal. 2020 Nov 4;18(1):178. Review. https://doi.org/10.1186/s12964-020-00670-2; PMCID: PMC7640644, Nov-2020

Articles in Peer-reviewed Journals

Boothby TC. "Water content influences the vitrified properties of CAHS proteins." Mol Cell. 2021 Feb 4;81(3):411-3. [Comment refers to the article: Arakawa K, Numata K. Reconsidering the "glass transition" hypothesis that intrinsically unstructured CAHS proteins contribute to desiccation tolerance of tardigrades. Mol Cell. 2021 Feb 4;81(3):409-10.] https://doi.org/10.1016/j.molcel.2020.12.009; PMID: 33545054, Feb-2021