Fiscal Year:	FY 2020 Task Last Updated: FY 05/18/2020
PI Name:	Seidler, Rachael D. Ph.D.
Project Title:	Spaceflight Effects on Neurocognitive Performance: Extent, Longevity, and Neural Bases
Division Name:	Human Research
Program/Discipline:	
Program/Discipline-Element/Subdiscipline:	HUMAN RESEARCH--Biomedical countermeasures
Joint Agency Name:	TechPort: No
Human Research Program Elements:	(1) HHC:Human Health Countermeasures
Human Research Program Risks:	(1) HSIA: Risk of Adverse Outcomes Due to Inadequate Human Systems Integration Architecture (2) Sensorimotor:Risk of Altered Sensorimotor/Vestibular Function Impacting Critical Mission Tasks
Space Biology Element:	None
Space Biology Cross-Element Discipline:	None
Space Biology Special Category:	None
PI Email:	rachaelseidler@ufl.edu Fax: FY
PI Organization Type:	UNIVERSITY Phone: 352-294-1722
Organization Name:	University of Florida
PI Address 1:	Applied Physiology \& Kinesiology
PI Address 2:	FLG 142, P.O. Box 118205
PI Web Page:	
City:	Gainesville State: FL
Zip Code:	32611-8205 Congressional District: 3
Comments:	NOTE: PI moved to University of Florida in July 2017; previous affiliation was University of Michigan.
Project Type:	FLIGHT,GROUND Solicitation / Funding Source: 2010 Crew Health NNJ10ZSA003N
Start Date:	07/14/2017 End Date: 09/30/2021
No. of Post Docs:	3 No. of PhD Degrees:
No. of PhD Candidates:	2 No. of Master' Degrees:
No. of Master's Candidates:	No. of Bachelor's Degrees:
No. of Bachelor's Candidates:	Monitoring Center: NASA JSC
Contact Monitor:	Norsk, Peter Contact Phone:
Contact Email:	Peter.norsk@nasa.gov
Flight Program:	
Flight Assignment:	NOTE: End date changed to 9/30/2021 per D. Risin/HRP and NSSC information (Ed., 8/27/20) NOTE: Changed end date to $9 / 30 / 2020$ per NSSC information (Ed., 10/9/19)
Key Personnel Changes/Previous PI:	
COI Name (Institution):	Bloomberg, Jacob Ph.D. (NASA Johnson Space Center) Mulavara, Ajitkumar Ph.D. (Universities Space Research Association)
Grant/Contract No.:	80NSSC17K0461
Performance Goal No.:	
Performance Goal Text:	

Task Description:

Research Impact/Earth Benefits:

Task Progress:

Bibliography Type:

NOTE: Continuation of "Spaceflight Effects on Neurocognitive Performance: Extent, Longevity, and Neural Bases," grant NNX11AR02G, due to Principal Investigator Seidler's move to University of Florida from University of Michigan. NASA Research Announcement NNJ10ZSA003N requested proposals to assess changes in elemental neurocognitive functions such as perception, motor control, memory, attention, language, executive function, and emotional processing following long duration spaceflight using both behavioral assessments and monitoring technologies such as fMRI. In response to this call, we propose to perform structural and functional MR brain imaging to identify the relationship between changes in crewmember neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post flight in crewmembers (Aim 1). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion (Aim 2). Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate neuroplastic and maladaptive brain changes in crewmembers following long duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes.

The results of this project will have relevance not only to understanding the effects of spaceflight on the human brain and behavior, but also for delineating the capacity of the brain to remodel in response to adaptive stimuli. As such, the results should prove informative for understanding the neural mechanisms associated with adaptive behavioral change and the rehabilitation of these changes during recovery periods.

NRA NNJ10ZSA003N requested proposals to assess changes in elemental neurocognitive functions such as perception, motor control, memory, attention, language, executive function, and emotional processing following long duration spaceflight using both behavioral assessments and monitoring technologies such as fMRI. In response to this call, we propose to perform structural and functional MR brain imaging to identify the relationship between changes in crewmember neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post flight in crewmembers (Aim 1). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion (Aim 2). Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad range of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate neuroplastic and maladaptive brain changes in crewmembers following long duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or, instead, is supported by substitution with compensatory brain processes. We have just completed data collection for this project in May 2020, including collection of multiple types of structural and functional brain MRIs. We have also collected performance on a battery of neuropsychological tests of working memory, processing speed, and motor function, as well as assessments of balance and mobility. Data analyses and manuscript preparation are underway.

Description: (Last Updated: 01/24/2024)

