Fiscal Year: FY 2019
Task Last Updated: FY 02/04/2019

<table>
<thead>
<tr>
<th>PI Name:</th>
<th>Kaplan, David L. Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Silk Composite Biomaterials for Shielding Medications in Space</td>
</tr>
<tr>
<td>Division Name:</td>
<td>Human Research</td>
</tr>
</tbody>
</table>

Program/Discipline: TRISH--TRISH

Joint Agency Name: Yes

Human Research Program Elements: None

Human Research Program Risks: None

Space Biology Element: None

Space Biology Cross-Element Discipline: None

Space Biology Special Category: None

PI Email: david.kaplan@tufts.edu

PI Organization Type: UNIVERSITY

Organization Name: Tufts University

PI Address 1: Department of Biomedical Engineering

PI Address 2: 4 Colby Street

PI Web Page:

city: Medford
State: MA
Zip Code: 02155
Congressional District: 5

Comments:

Project Type: GROUND
Solicitation: 2018 TRA BRASH1801: Translational Research Institute for Space Health (TRISH) Biomedical Research Advances for Space Health

Start Date: 01/01/2019
End Date: 12/31/2020

No. of Post Docs:
No. of PhD Degrees:

No. of PhD Candidates:
No. of Master’s Degrees:

No. of Master’s Candidates:
No. of Bachelor’s Degrees:

No. of Bachelor’s Candidates:
Monitoring Center: TRISH

Contact Monitor:
Contact Phone:

Flight Program:

Flight Assignment:

Key Personnel Changes/Previous PI:

COI Name (Institution): Kluge, Jonathan Ph.D. (Trustees of Tufts College)

Grant/Contract No.: NNX16AO69A-T0411

Performance Goal No.:

Performance Goal Text:
Task Description:	The goal is to utilize silk protein, an US Food and Drug Administration (FDA) approved protein biomaterial, in composite material formats, to shield and protect a range of medications – addressing topic #5 in Biomedical Research Advances for Space Health (BRASH) 1801 – New materials for shielding medications. We will utilize novel formulations of the silk protein in composite formats with inorganic particles, as both pouch and as part of the material, to demonstrate broad protection of a range of drugs during exposure to environmental extremes using accelerated testing, mechanistic insights and modeling, and functional assessments. The outcome will be new composite material systems that provide broad-ranged protection, a preliminary model for predictive outcomes, and publications.
Rationale for HRP Directed Research:	
Research Impact/Earth Benefits:	
Task Progress:	New project for FY2019.
Bibliography Type:	Description: (Last Updated: 02/01/2019)