Task Book Report Generated on: 07/05/2025

X14 X X 7	EV 2010		EV 02/20/2010
Fiscal Year:	FY 2018	Task Last Updated:	FY 03/20/2018
PI Name:	Dulchavsky, Scott A. M.D., Ph.D.		
Project Title:	Fluid Shifts		
Division Name:	Human Research		
Program/Discipline:	HUMAN RESEARCH		
Program/Discipline Element/Subdiscipline:	HUMAN RESEARCHBiomedical counter	ermeasures	
Joint Agency Name:		TechPort:	No
Human Research Program Elements:	(1) HHC :Human Health Countermeasures		
Human Research Program Risks:	(1) Cardiovascular:Risk of Cardiovascular Adaptations Contributing to Adverse Mission Performance and Health Outcomes (2) SANS:Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS)		
Space Biology Element:	None		
Space Biology Cross-Element Discipline:	None		
Space Biology Special Category:	None		
PI Email:	sdulcha1@hfhs.org	Fax:	FY 313 916 9445
PI Organization Type:	PUBLIC SERVICE	Phone:	313 916 9306
Organization Name:	Henry Ford Health System		
PI Address 1:	Surgery		
PI Address 2:	2799 W. Grand Boulevard, CFP-1		
PI Web Page:			
City:	Detroit	State:	MI
Zip Code:	48202-2608	Congressional District:	13
Comments:			
Project Type:	Flight	Solicitation / Funding Source:	2011 Crew Health NNJ11ZSA002NA
Start Date:	05/16/2013	End Date:	01/31/2021
No. of Post Docs:	0	No. of PhD Degrees:	0
No. of PhD Candidates:	0	No. of Master' Degrees:	0
No. of Master's Candidates:	0	No. of Bachelor's Degrees:	0
No. of Bachelor's Candidates:	0	Monitoring Center:	NASA JSC
Contact Monitor:	Norsk, Peter	Contact Phone:	
Contact Email:	Peter.norsk@nasa.gov		
Flight Program:	ISS		
Flight Assignment:	NOTE: Extended to 1/31/2021 per NSSC is	nformation (Ed., 10/16/18)	
Key Personnel Changes/Previous PI:	none		
COI Name (Institution):	Ebert, Douglas Ph.D. (Wyle Laboratories, Garcia, Kathleen B.S. (Wyle Laboratories, Sargsyan, Ashot M.D. (Wyle Laboratories)	s, Inc.)	
Grant/Contract No.:	NNX13AK30G		
Performance Goal No.:			
Performance Goal Text:			

Task Book Report Generated on: 07/05/2025

Editor's Note (7/11/2013): NOTE THIS IS A CONTINUATION OF FUNDING FOR NNX13AB42G (Microgravity Associated Compartmental Equilibration (MACE)) WITH THE SAME PRINCIPAL INVESTIGATOR. Fifty percent of American astronauts have developed ocular refraction change after long duration space flight on the International Space Station (ISS). Recent findings have also included structural changes of the eye (papilledema, globe flattening, choroidal folds) and the optic nerve (sheath dilatation, tortuosity, and kinking), as well as imaging signs and lumbar puncture data indicative of elevated intracranial pressure (ICP). While short duration space flight is also characterized by vision disturbances, these are generally transient and do not appear to have lasting impacts on the structure or function of the eye. Changes in vision, eye, and adnexa morphology are hypothesized to be the result of space flight-induced cephalad fluid shifts and transiently elevated intracranial pressure. This hypothesis, however, has not been systematically tested. In earlier anecdotal publications, ICP elevation in long-duration space flight has been inferred but without association with structural or functional changes of the eye. Furthermore, while fluid shifts and compartmentalization during short-duration space flight (Space Shuttle missions) have been studied, the fluid distribution patterns and their effects on intracranial pressure or the structure and function of the sensory organs in the course of long-duration space flight are not well known.

Several ISS crewmembers have reported consistent worsening of nasal congestion and associated symptoms in late afternoon hours, necessitating topical and systemic decongestant use. Although several explanations have been entertained, food (salt) and water intake are likely to have provoked these symptoms through postprandial modification of fluid balance or increase in the circulating volume that manifests in the most susceptible individuals.

The purpose of the proposed work is to objectively characterize the changes in fluid distribution, including intra/extracellular and intra/extravascular fluid shifts, by applying advanced non-invasive assessment technologies before, during, and after long duration space flight. Additionally, we will examine the relationship between the type and magnitude of the fluid shift with any effects on eye morphology and vision disturbances, intraocular pressure (IOP), and measures of intracranial pressure. Further, we seek to determine whether the magnitude of fluid shifts during space flight, as well as the above effects of those shifts can be predicted based upon crewmember baseline data and responses to acute head-down tilt tests performed before launch. Finally, we propose to evaluate the effect of lower body negative pressure (LBNP) on the above parameters.

To our knowledge, this is the first attempt to systematically determine the impact of the fluid distribution in microgravity on a comprehensive set of structural and functional measures including, but not limited to, those related to intracranial pressure, vision, morphology of the eye and its adnexa, and the vascular systems of the head and neck, during and after long duration space flight. The study design and methodology are based on the extensive relevant experience of the Investigators, including many successful ground-based, space flight analogue, and space flight projects and investigations.

Primary Hypothesis

Prolonged microgravity-induced, headward volume, and pressure shifts promote elevation of intracranial pressure and result in alterations in crewmembers' vision.

Specific Aims

Specific Aim I: To characterize fluid distribution and compartmentalization before, during, and after long-duration space flight.

Hypothesis 1: Fluid distribution measured by dilution techniques will reflect a headward fluid shift and an intrato extra-vascular fluid shift during space flight, returning to pre-flight condition after landing.

Hypothesis 2: Regional headward fluid shifts in-flight are documented by increased cephalad venous dimensions (jugular veins) and flow characteristics, skin and soft tissue thickness.

Hypothesis 3: Fluid re-distribution towards the eye (detected in choroid, retina, and optic nerve head using ultrasonography and optical coherence tomography), and in arteries supplying ocular vascular beds, contributes to

Hypothesis 4: Splanchnic venous congestion (detected by portal vein size) contributes to headward volume shift, but is not in communication with the veins of head and neck. Thus, there should be a different level of venous congestion in these two compartments.

Specific Aim II: To correlate in-flight alterations of eye structure, ocular vascular parameters, and vision with headward fluid shifts, vascular dimensions, and flow patterns.

Hypothesis 5: Space flight-induced fluid shifts will have an upregulating effect on ICP and will alter ocular refraction / visual acuity. These changes will vary in magnitude and respectively, in their resolution pattern after space flight.

Hypothesis 6: In-flight ICP-related measures, IOP (intraocular pressure), venous and arterial morphometric and flow characteristics, vascular resistance of ocular vascular beds, and optic nerve anatomy will trend towards normal-gravity levels temporarily during and residually after fluid sequestration (LBNP) interventions.

Specific Aim III: To determine systemic and ocular factors of individual susceptibility to the development of ICP elevation and/or vision alterations.

Hypothesis 7: Subjects with greater fluid shifts (as measured by the ultrasound method in Aim 1) during pre-flight testing will experience greater fluid shifts in-flight and will be more susceptible to flight-induced vision alterations.

Hypothesis 8: Subjects who are resistant to the reversal of in-flight symptoms and physiological status through the application of LBNP will be more susceptible to persistent flight-induced vision alterations.

Hypothesis 9: Propensity towards more severe changes in-flight and the more indolent postflight resolution pattern will correlate with a range of individual characteristics of the crewmembers, such as anatomical and microanatomical and physiological features and potentially, hitherto unsuspected factors.

NOTE: This study was merged with investigations from Dr. Alan Hargens (Fluid distribution before, during and after prolonged space flight) and Dr. Michael Stenger (Distribution of Body Fluids during Long Duration Space Flight and Subsequent Effects on Intraocular Pressure and Vision Disturbance) resulting in a comprehensive study titled "Fluid

Task Description:

Task Book Report Generated on: 07/05/2025

Shifts Before, During and After Prolonged Space Flight and Their Association with Intracranial Pressure and Visual Impairment" (short title: Fluid Shifts). Rationale for HRP Directed Research: Current means of measuring increased intracranial pressure require an invasive monitoring system with skilled medical personnel. The techniques outlined in this proposal, if verified, would provide a rapid, accurate, non-invasive, and scalable solution to measure increases in intracranial pressure for a number of critical medical conditions. These studies Research Impact/Earth Benefits: will also provide physiological insight to the mechanisms of fluid shifts and their relationship to intracranial pressure. This information could be relevant to terrestrial disorders of intracranial pressure such as idiopathic intracranial hypertension (IIH). We have continued to make significant progress over the past year in all dimensions of the Fluid Shifts (FS) experiment. To date the team has performed preflight baseline data collection on twelve crewmembers, and completed all inflight sessions for 10 subjects. All postflight sessions ranging from return plus 10 days (R+10) to R+180 have also been completed for the first 10 subjects. Upright and 3 Tesla (3T) postflight MRI were also collected on these 10 subjects. Since last year, three additional subjects have been approved for the FS experiment, bringing the total subject count to 13. As noted above, data collection is complete for the first 10 subjects and preflight data collection is complete for the eleventh subject. Training is underway for the last three subjects. The currently planned flight manifest will have one Fluid Shifts subject on each of the next three ISS missions. Hardware and procedures have run smoothly this past year, with no major failures. However, the FS team has continued to collectively respond to changes in circumstances, most notably the extension of the mission length for the Expedition 51 Commander. This mission was previously planned as a standard 6 month mission but was extended to over 9 months, necessitating adjustment of inflight and postflight data collection schedules. Supine and tilted 3T MRI data collections continued at the Victory Lakes facility (University of Texas Medical Branch-UTMB), taking advantage of the existing MRID (MED B) pulse sequences. Subjects continued to tolerate the procedure well and all early assessments of data quality gave satisfactory results. Since 2016, the team includes Dr. Task Progress: Larry Kramer (University of Texas Health Science Center-Houston (UTHSC-H)) for general MRI advising and assistance with data analysis. Specifically, work is underway for CSF (cerebrospinal fluid) flow quantification in the Sylvian aqueduct and determination of pre- and postflight CSF production rates. Other MRI analysis methods continue to be refined to optimize data analysis in terms of quality and resources. Notwithstanding the decision by Medical Operations to use IV contrast during MED B MRI scans as the preferred version for venography, none of the Fluid Shifts subjects has received contrast injections and data collections are likely to continue with non-contrast techniques. We are in the process of adding Dr. Mark Haacke to the team, who is a specialist in the collection and analysis of MRI venography data. He will complete the MRI analysis team with the analysis of susceptibility weighted imaging (SWI), and time of flight (TOF venography) in the head and neck. Since Russian and European Space Agency (ESA) subjects "direct return" to their respective countries, immediate postflight testing in Houston is not possible. The imaging procedure was standardized among UTMB, Research Center of Neurology in Moscow, Russia, and DLR/:envihab in Cologne, Germany. Both Partner facilities were equipped with -15 degree foam wedges and have prior experience with tilted MRI. Postflight MRI sessions for Russian and ESA crewmembers this past year were successful.

Description: (Last Updated: 03/14/2025)