Project Information

Fiscal Year: FY 2014
Task Last Updated: FY 07/18/2014

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI Name</td>
<td>Lundblad, Nathan Ph.D.</td>
</tr>
<tr>
<td>Project Title</td>
<td>Microgravity Dynamics of Bubble-Geometry Bose-Einstein Condensates</td>
</tr>
<tr>
<td>Division Name</td>
<td>Physical Sciences</td>
</tr>
<tr>
<td>Program/Discipline</td>
<td>FUNDAMENTAL PHYSICS--Fundamental physics</td>
</tr>
<tr>
<td>PI Email</td>
<td>nlundbla@bates.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>207-786-6321</td>
</tr>
<tr>
<td>Organization Name</td>
<td>Bates College</td>
</tr>
<tr>
<td>PI Address 1</td>
<td>Department of Physics and Astronomy</td>
</tr>
<tr>
<td>PI Address 2</td>
<td>44 Campus Ave</td>
</tr>
<tr>
<td>PI Web Page</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>Lewiston</td>
</tr>
<tr>
<td>State</td>
<td>ME</td>
</tr>
<tr>
<td>Zip Code</td>
<td>04240-6018</td>
</tr>
<tr>
<td>Congressional District</td>
<td>2</td>
</tr>
<tr>
<td>Project Type</td>
<td>FLIGHT</td>
</tr>
<tr>
<td>Solicitation</td>
<td>2013 Fundamental Physics NNH13ZTT002N (Cold Atom Laboratory--CAL)</td>
</tr>
<tr>
<td>Start Date</td>
<td>04/01/2014</td>
</tr>
<tr>
<td>End Date</td>
<td>04/30/2019</td>
</tr>
<tr>
<td>No. of Post Docs</td>
<td></td>
</tr>
<tr>
<td>No. of PhD Degrees</td>
<td></td>
</tr>
<tr>
<td>No. of PhD Candidates</td>
<td></td>
</tr>
<tr>
<td>No. of Master's Degrees</td>
<td></td>
</tr>
<tr>
<td>No. of Master's Candidates</td>
<td></td>
</tr>
<tr>
<td>No. of Bachelor's Degrees</td>
<td></td>
</tr>
<tr>
<td>No. of Bachelor's Candidates</td>
<td></td>
</tr>
<tr>
<td>Contact Monitor</td>
<td>Israelsson, Ulf</td>
</tr>
<tr>
<td>Contact Email</td>
<td>ulf.e.israelsson@jpl.nasa.gov</td>
</tr>
<tr>
<td>Flight Program</td>
<td>ISS</td>
</tr>
<tr>
<td>Monitoring Center</td>
<td>NASA JPL</td>
</tr>
<tr>
<td>Contact Phone</td>
<td></td>
</tr>
</tbody>
</table>

Key Personnel Changes/Previous PI:

- Aveline, David Ph.D. (Jet Propulsion Laboratory)
- Lannert, Courtney Ph.D. (Smith College)

Grant/Contract No.: JPL 1502172

Performance Goal No.:

- Notions of geometry, topology, and dimensionality have directed the historical development of quantum-gas physics.
Notions of geometry, topology, and dimensionality have directed the historical development of quantum-gas physics. With a toolbox of forces used to confine, guide, and excite Bose-Einstein condensates (BEC) or degenerate Fermi gases (DFG), physicists have used quantum gases to test fundamental ideas in quantum theory, statistical mechanics, and in recent years notions of strongly-correlated many-body physics from the condensed-matter world.

We propose a specific program to explore a trapping geometry for quantum gases that is both tantalizing theoretically and prohibitively difficult to attain terrestrially: a quantum gas in a bubble geometry, i.e. a trap formed by a spherical or ellipsoidal shell structure, confining a 2D quantum gas to the surface of an experimentally-controlled topologically-connected “bubble.” The physics of a quantum gas confined to such a surface has not been explored terrestrially due to the limitations of gravitational sag; interesting work has certainly been done with gases confined to the lower regions of bubble potentials, but the fully symmetric situation has yet to be explored. The low-energy excitations of such a system are unexplored, and notions of vortex creation and behavior as well as Kosterlitz-Thouless physics are tantalizing aims as well. The solid-state modeling goals of the optical-lattice physics community are also fundamentally connected to the system, as the canonical Mott-insulator/superfluid transition features superfluid shells isolated between insulating regions.

The central method to reach the sought-after bubble-geometry BEC or DFG is that of rf or microwave dressing of the bare trapping potentials provided by the CAL “chip trap.” Radiofrequency dressing has been used conceptually through "rf-knife" evaporative cooling, but more recently through explicit construction of adiabatic potentials for interferometry, and shell-trap construction for both thermal and quantum gases. The proposed work is a window into a physical regime that is quite difficult to achieve terrestrially due to trap distortion; given the advantages of a microgravity environment, NASA CAL is uniquely positioned to realize the physics goals of this proposal.