Fiscal Year: FY 2014
Task Last Updated: FY 10/16/2013

PI Name: Bloomberg, Jacob J. Ph.D.
Project Title: Developing Predictive Measures of Sensorimotor Adaptability to Produce Customized Countermeasure Prescriptions

Division Name: Human Research
Program/Discipline: NSBRI
Program/Discipline--Element/Subdiscipline: NSBRI--Sensorimotor Adaptation Team

Joint Agency Name:
TechPort: Yes

Human Research Program Elements: (1) **HHC**: Human Health Countermeasures

Human Research Program Risks: (1) **HCI**: Risk of Inadequate Human-Computer Interaction
(2) **Sensorimotor (SM)**: Risk of Impaired Control of Spacecraft, Associated Systems and Immediate Vehicle Egress Due to Vestibular/Sensorimotor Alterations Associated with Space Flight

Space Biology Element: None
Space Biology Cross-Element Discipline: None
Space Biology Special Category: None

PI Email: jacob.j.bloomberg@nasa.gov
Fax: FY 281-244-5734

PI Organization Type: NASA CENTER
Phone: 281-483-0436

Organization Name: NASA Johnson Space Center
PI Address 1: Biomedical Research and Environmental Sciences Division
PI Address 2: 2101 NASA Parkway, SK272

City: Houston
State: TX
Zip Code: 77058-3607
Congressional District: 36

Comments:

Project Type: GROUND
Solicitation: 2011 Crew Health NNJ11ZSA002NA

Start Date: 10/01/2012
End Date: 09/30/2015

No. of Post Docs: 0
No. of PhD Degrees: 0

No. of PhD Candidates: 1
No. of Master's Degrees: 0

No. of Master’s Candidates: 0
No. of Bachelor's Degrees: 0

No. of Bachelor's Candidates: 0
Monitoring Center: NSBRI

Contact Monitor:
Contact Phone:
Contact Email:
Flight Program:
Flight Assignment:
Key Personnel Changes/Previous PI:

COI Name (Institution): Buccello-Stout, Regina
Wyle Integrated Sciences and Engineering Group
Wood, Scott Azusa Pacific University
Cohen, Helen Baylor College of Medicine
Mulavara, Ajitkumar Universities Space Research Association
Peters, Brian Wyle Laboratories, Inc.
Brady, Rachel Wyle Integrated Sciences and Engineering Group
Seidler, Rachael University of Michigan, Ann Arbor

Grant/Contract No.: NCC 9-58-SA02801

Performance Goal No.:
Performance Goal Text:

Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation...
Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readaptation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functional tasks during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of a countermeasure comprised of a training program designed to enhance sensorimotor adaptability. Due to this inherent individual variability we need to develop predictive measures of sensorimotor adaptability that will allow us to predict, before actual space flight, which crewmember will experience challenges in adaptive capacity. Thus, obtaining this information will allow us to design and implement better sensorimotor adaptability training countermeasures that will be customized for each crewmember's unique adaptive capabilities. Therefore the goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to design sensorimotor adaptability training countermeasures that are customized for each crewmember's individual sensory bias and adaptive capacity.

To achieve these goals we have the following specific aims:

Specific Aim 1: Determine whether behavioral metrics of individual sensory bias predicts sensorimotor adaptability. Subjects show individual variation in the degree to which sensory inputs are weighted and reorganized to produce motor output during exposure to discordant sensory conditions. These individual sensory biases may serve as predictors of adaptability. For this aim, subjects will perform tests that will delineate individual sensory biases in tests of visual, vestibular and proprioceptive function. They will then be tested to determine if these metrics predict how quickly they adapt to a novel discordant sensory environment.

Specific Aim 2: Determine if individual capability for strategic and plastic-adaptive responses predicts sensorimotor adaptability. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive. Strategic modifications represent immediate and transitory changes in control that are employed to deal with short-term changes in the prevailing environment. If these changes are prolonged then plastic-adaptive changes are evoked that modify central nervous system function to automate new behavioral responses. For this aim, each subject's strategic and plastic-adaptive abilities will be assessed using two tests of locomotor function designed specifically to delineate both mechanisms. Subjects will then be tested to determine if these measures predict how quickly they adapt to a novel discordant sensory environment.

Specific Aim 3: Develop predictors of sensorimotor adaptability using brain structural and functional metrics. We will measure individual differences in regional brain volumes (structural MRI), white matter integrity (diffusion tensor imaging, or DTI), functional network integrity (resting state functional connectivity MRI), and sensorimotor adaptation task-related functional brain activation (functional MRI). Subjects will then be tested to determine if these metrics predict how quickly they behaviorally adapt to a novel discordant sensory environment.

Specific Aim 4: Determine if individualized training prescriptions based on predictive metrics can be used to optimize sensorimotor adaptability training countermeasures. To determine if predictive adaptability metrics can be used to design individualized training programs we will examine a test case focusing on improving adaptive performance of visually dependent subjects. Subjects who are identified in Experiment 1, as being visually dependent with reduced adaptive capability will receive individualized training prescriptions designed to reduce their dependence on vision and increase their ability to use vestibular information for control of movement. The training program will have two components. 1) Subjects will walk on a treadmill-motion base system while viewing discordant visual scenes to reduce dependency on vision along with support-surface motion to challenge gait stability. 2) During this training subjects will receive stimuli (vestibular stochastic resonance) to enhance vestibular signal detection. We anticipate that these two components will act in synergy during training to both reduce visual dependency while increasing dependence on vestibular information. Training efficacy will be assessed by comparing the performance of trained and control visually dependent subjects on how quickly they adapt to a novel discordant sensory environment.

In an effort to increase efficiency and data capture we are currently conducting data collection for Specific Aims 1, 3, and part of 2 simultaneously on the same subjects.

Rationale for HRP Directed Research:

Sensorimotor adaptability training programs have Earthbound application in rehabilitation of patients with balance disorders, and for fall prevention training among seniors. We have previously shown that training using variation in visual flow during treadmill exercise improves functional mobility in healthy older adults who were experiencing age-related postural instabilities (Buccello-Stout et al. 2008, 2013). This project will provide measures that will allow individualized training programs that serve to enhance the efficacy of ground-based rehabilitation and training programs.

Research Impact/Earth Benefits:

In an effort to increase efficiency we decided to complete the data collection for Specific Aims 1, 3, and part of 2 simultaneously on the same subjects. This approach had a number of benefits including: 1) Increased data capture: by having the same subjects perform all three specific aims we can enhance our ability to detect how a wider range factors can predict adaptability in a specific individual. This provides a much richer data base and potentially a better understanding of the predictive power of the selected factors. 2) Minimize prior adaptive experience: Subjects who have previously participated in any of our adaptation experiments were excluded from this study because that prior experience may serve as a training modality and therefore potentially influence our results. To satisfy this requirement we requested that the NASA Test Subject Office only recruit completely naïve subjects. Given this constraint it was more efficient to perform Specific Aims 1, 2, and 3 in a single block. 3) Minimize the number of MRI scans: This approach allowed us to leverage on-going scanning activities in the lab and therefore increase efficiency and reduce costs. We are currently in the process of collecting data.

Task Progress:
In order to perform this integrated data collection procedure the following activities were completed: 1) Institutional Review Board approval was obtained. 2) A NASA Test Readiness Review was completed. 3) Pilot experimental dry runs were conducted at the University of Texas Medical Branch (UTMB) Victory Lakes MRI facility to practice and finalize the neuroimaging procedures required for Specific Aim 3. 4) Procedures to measure proprioceptive acuity were developed that were superior to those described in the initial proposal. In collaboration with the NASA-JSC Exercise Physiology Lab a more accurate and repeatable measure of proprioceptive acuity was implemented entailing the use of an isokinetic dynamometer that measures an individual's ability to reproduce a predetermined joint angle after passively moving the limb.

Bibliography Type:

<table>
<thead>
<tr>
<th>Description: (Last Updated: 05/16/2019)</th>
</tr>
</thead>
</table>

Abstracts for Journals and Proceedings

Articles in Peer-reviewed Journals

Awards

Bloomberg J. "JSC Group Achievement Award for the Development of the Sensorimotor Adaptability Training System, June 2013." Jun-2013