Fiscal Year: FY 2013
Task Last Updated: FY 08/05/2013

PI Name: Wyatt, Sarah E Ph.D.
Project Title: Proteomics Analysis of Arabidopsis Seedlings in Microgravity
Division Name: Space Biology
Program/Discipline: SPACE BIOLOGY
Program/Discipline--Element/Subdiscipline: SPACE BIOLOGY--Developmental biology
Human Research Program Elements: None
Human Research Program Risks: None
Space Biology Element: (1) Cell & Molecular Biology
(2) Plant Biology
Space Biology Cross-Element Discipline: None
Space Biology Special Category: None
PI Email: wyatts@ohio.edu
PI Organization Type: UNIVERSITY
PI Organization Type: UNIVERSIT
PI Email: wyatts@ohio.edu
PI Phone: 740-593-1133
PI Fax: FY
PI Address 1: 315 Porter Hall
PI Address 2: Environmental and Plant Biology
PI Web Page:
City: Athens
State: OH
Zip Code: 45701
Congressional District: 15
Comments:
Project Type: FLIGHT
Solicitation: 2012 Space Biology NNN12ZZT001N
Start Date: 09/01/2013
End Date: 08/31/2015
No. of Post Docs:
No. of PhD Degrees:
No. of PhD Candidates:
No. of Master’s Degrees:
No. of Master's Candidates:
No. of Bachelor’s Candidates:
Monitoring Center: NASA KSC
Contact Monitor: Levine, Howard
Contact Phone: 321-861-3502
Contact Email: howard.g.levine@nasa.gov
Flight Program: ISS
Flight Assignment: Rapid Turn Around Flight
COI Name (Institution): Luesse, Darron Ph.D. (Southern Illinois University, Edwardsville)
Grant/Contract No.: NNX13AM48G
Performance Goal No.:
Performance Goal Text:
Task Description: The space flight environment provides a unique environment to understand how gravity informs plant growth, development, and physiological processes. The central objective of this study is to determine what proteins are differentially expressed during space flight in developing Arabidopsis seedlings. A body of research has evaluated the differential gene expression on space flight vs ground controls, but gene expression provides an indirect measure of what proteins are expressed. Genes may be transcribed but the transcripts degraded, or translated proteins may be regulated through post translational modifications. Our hypothesis is simple: Some components of plant physiology that are informed by gravity are regulated by post transcriptional or post translational mechanisms. Proteomic analysis is the best/only method to identify these components. We propose to use BRIC-PDFU hardware on a Rapid Turn-Around Space Flight Experiment to gain insights into differences in protein profiles between Arabidopsis seedlings grown...
during space flight and ground based controls. Arabidopsis seedlings will be germinated, grown, and tissues fixed on orbit. Once returned to Earth, total protein will be extracted, labeled with iTRAQ reagents and analyzed for differences in protein profiles. These data will complement the gene expression data currently available from space flight experiments and also provide novel insights by supplying data on differences in post-transcriptional regulation. They will also provide a foundation for a network analysis to generate additional hypotheses as to the mechanisms involved in gravity perception/response in plants.

| Rationale for HRP Directed Research: |
| Research Impact/Earth Benefits: | 0
| Task Progress: | New project for FY2013.
| Bibliography Type: | Description: (Last Updated: 03/30/2018) |