Fiscal Year: FY 2007
Task Last Updated: FY 02/12/2007

PI Name: Shibata, Shigeki M.D., Ph.D.
Project Title: Impacts of Bed Rest, Exercise and Aging on Dynamic Ventricular-Arterial Coupling (Postdoctoral Fellowship)

Division Name: Human Research
Program/Discipline: NSBRI Teams
Program/Discipline--Element/Subdiscipline: NSBRI Teams--Cardiovascular Alterations Team

Human Research Program Elements: None
Human Research Program Risks: (1) **Aerobic** Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity

Space Biology Element: None
Space Biology Cross-Element Discipline: None
Space Biology Special Category: None

PI Email: shigekishibata@texashealth.org
Fax: FY
PI Organization Type: UNIVERSITY
Phone: 214-345-6501
Organization Name: The University of Texas Southwestern Medical Center at Dallas
PI Address 1: 7232 Greenville Avenue

City: Dallas
State: TX
Zip Code: 75231
Congressional District: 30

Comments:

Project Type: GROUND
Solicitation: 2006 NSBRI-RFP-06-01 Postdoctoral Fellowships
Start Date: 12/01/2006
End Date: 11/30/2008

<table>
<thead>
<tr>
<th>No. of Post Docs:</th>
<th>No. of PhD Degrees:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of PhD Candidates:</th>
<th>No. of Master's Degrees:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Master's Candidates:</th>
<th>No. of Bachelor's Degrees:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Bachelor's Candidates:</th>
<th>Monitoring Center:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSBRI</td>
</tr>
</tbody>
</table>

Contact Monitor:
Contact Email:
Flight Program:
Flight Assignment:
Key Personnel Changes/Previous PI:

COI Name (Institution): Levine, Benjamin (MENTOR/The University of Texas Southwestern Medical Center at Dallas)
Grant/Contract No.: NCC 9-58-PF01101

Performance Goal No.:

Performance Goal Text:

POSTDOCTORAL FELLOWSHIP

Ventricular-arterial stiffening after microgravity exposure, leading to orthostatic intolerance and reduced exercise capacity, has been a high-priority problem for NASA. One recent study by Dr. Ben Levine and colleagues demonstrated that three weeks of bed rest were equivalent to 30 years of aging for maximal oxygen transport capacity. This study and others have suggested that some of the loss of functional capacity with aging and after microgravity exposure may be due to physical inactivity. We have developed a novel concept of dynamic ventricular-arterial coupling to assess the complex interaction between ventricular and arterial compliance and plan to apply this paradigm to aging and bed rest with an exercise countermeasure.
Task Description:

The objective of this project is to assess the effects of aging and microgravity exposure on dynamic ventricular-arterial coupling, and to determine the optimal physical activity to prevent the changes in this interaction. To accomplish these objectives, we aim to:

- Recruit cross-sectional sedentary individuals between the ages of 20 to 80 yrs and with four different doses of life-long exercise, and;
- Perform five-week, six-degree head-down bed rest with and without rowing ergometry plus resistance training in healthy young individuals.

Dynamic ventricular-arterial coupling will be evaluated by transfer function analysis among beat-by-beat changes in left ventricular-end diastolic volume and pressure, stroke volume and systolic blood pressure. The findings from this study will determine the effectiveness of an exercise countermeasure for prolonged microgravity exposure and extend research on parallels between bed rest and aging. In addition, we have found remarkable impairment of dynamic ventricular-arterial coupling in congestive heart failure (CHF), suggesting that the findings will be applicable for reducing the prevalence of CHF with age.

As such, this project has great Earth relevant healthcare benefits. Finally, this project will be performed as a part of Dr. Levine's funded NSBRI and NIH research, which includes comprehensive evaluations for cardiovascular physiology during prolonged simulated microgravity and aging.

Rationale for HRP Directed Research:

We have found remarkable impairment of dynamic ventricular-arterial coupling in congestive heart failure (CHF), suggesting that the findings will be applicable for reducing the prevalence of CHF with age.

Research Impact/Earth Benefits:

New project for FY2007.

Bibliography Type:

Description: (Last Updated: 07/12/2013)